Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sapinet: A sparse event-based spatiotemporal oscillator for learning in the wild (2204.06216v1)

Published 13 Apr 2022 in cs.NE

Abstract: We introduce Sapinet -- a spike timing (event)-based multilayer neural network for \textit{learning in the wild} -- that is: one-shot online learning of multiple inputs without catastrophic forgetting, and without the need for data-specific hyperparameter retuning. Key features of Sapinet include data regularization, model scaling, data classification, and denoising. The model also supports stimulus similarity mapping. We propose a systematic method to tune the network for performance. We studied the model performance on different levels of odor similarity, gaussian and impulse noise. Sapinet achieved high classification accuracies on standard machine olfaction datasets without the requirement of fine tuning for a specific dataset.

Summary

We haven't generated a summary for this paper yet.