Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Highly efficient reliability analysis of anisotropic heterogeneous slopes: Machine Learning aided Monte Carlo method (2204.06098v1)

Published 4 Apr 2022 in cs.LG and cs.CE

Abstract: Machine Learning (ML) algorithms are increasingly used as surrogate models to increase the efficiency of stochastic reliability analyses in geotechnical engineering. This paper presents a highly efficient ML aided reliability technique that is able to accurately predict the results of a Monte Carlo (MC) reliability study, and yet performs 500 times faster. A complete MC reliability analysis on anisotropic heterogeneous slopes consisting of 120,000 simulated samples is conducted in parallel to the proposed ML aided stochastic technique. Comparing the results of the complete MC study and the proposed ML aided technique, the expected errors of the proposed method are realistically examined. Circumventing the time-consuming computation of factors of safety for the training datasets, the proposed technique is more efficient than previous methods. Different ML models, including Random Forest (RF), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) are presented, optimised and compared. The effects of the size and type of training and testing datasets are discussed. The expected errors of the ML predicted probability of failure are characterised by different levels of soil heterogeneity and anisotropy. Using only 1% of MC samples to train ML surrogate models, the proposed technique can accurately predict the probability of failure with mean errors limited to 0.7%. The proposed technique reduces the computational time required for our study from 306 days to only 14 hours, providing 500 times higher efficiency.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.