Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Slope stability predictions on spatially variable random fields using machine learning surrogate models (2204.06097v1)

Published 4 Apr 2022 in cs.LG and cs.CE

Abstract: Random field Monte Carlo (MC) reliability analysis is a robust stochastic method to determine the probability of failure. This method, however, requires a large number of numerical simulations demanding high computational costs. This paper explores the efficiency of different ML algorithms used as surrogate models trained on a limited number of random field slope stability simulations in predicting the results of large datasets. The MC data in this paper require only the examination of failure or non-failure, circumventing the time-consuming calculation of factors of safety. An extensive dataset is generated, consisting of 120,000 finite difference MC slope stability simulations incorporating different levels of soil heterogeneity and anisotropy. The Bagging Ensemble, Random Forest and Support Vector classifiers are found to be the superior models for this problem amongst 9 different models and ensemble classifiers. Trained only on 0.47% of data (500 samples), the ML model can classify the entire 120,000 samples with an accuracy of %85 and AUC score of %91. The performance of ML methods in classifying the random field slope stability results generally reduces with higher anisotropy and heterogeneity of soil. The ML assisted MC reliability analysis proves a robust stochastic method where errors in the predicted probability of failure using %5 of MC data is only %0.46 in average. The approach reduced the computational time from 306 days to less than 6 hours.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.