Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backdoor Attack against NLP models with Robustness-Aware Perturbation defense (2204.05758v1)

Published 8 Apr 2022 in cs.CR and cs.LG

Abstract: Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker defined trigger. This threat could happen when the training process is not fully controlled, such as training on third-party data-sets or adopting third-party models. There has been a lot of research and different methods to defend such type of backdoor attacks, one being robustness-aware perturbation-based defense method. This method mainly exploits big gap of robustness between poisoned and clean samples. In our work, we break this defense by controlling the robustness gap between poisoned and clean samples using adversarial training step.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (4)