Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Robust Learning Rule for Soft-Bounded Memristive Synapses Competitive with Supervised Learning in Standard Spiking Neural Networks

Published 12 Apr 2022 in cs.ET, cs.LG, and cs.NE | (2204.05682v1)

Abstract: Memristive devices are a class of circuit elements that shows great promise as future building block for brain-inspired computing. One influential view in theoretical neuroscience sees the brain as a function-computing device: given input signals, the brain applies a function in order to generate new internal states and motor outputs. Therefore, being able to approximate functions is a fundamental axiom to build upon for future brain research and to derive more efficient computational machines. In this work we apply a novel supervised learning algorithm - based on controlling niobium-doped strontium titanate memristive synapses - to learning non-trivial multidimensional functions. By implementing our method into the spiking neural network simulator Nengo, we show that we are able to at least match the performance obtained when using ideal, linear synapses and - in doing so - that this kind of memristive device can be harnessed as computational substrate to move towards more efficient, brain-inspired computing.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.