Papers
Topics
Authors
Recent
2000 character limit reached

Maximal Inequalities and Some Applications

Published 10 Apr 2022 in math.PR | (2204.04690v2)

Abstract: A maximal inequality is an inequality which involves the (absolute) supremum $\sup_{s\leq t}|X_{s}|$ or the running maximum $\sup_{s\leq t}X_{s}$ of a stochastic process $(X_t)_{t\geq 0}$. We discuss maximal inequalities for several classes of stochastic processes with values in an Euclidean space: Martingales, L\'evy processes, L\'evy-type - including Feller processes, (compound) pseudo Poisson processes, stable-like processes and solutions to SDEs driven by a L\'evy process -, strong Markov processes and Gaussian processes. Using the Burkholder-Davis-Gundy inequalities we als discuss some relations between maximal estimates in probability and the Hardy-Littlewood maximal functions from analysis. This paper has been accepted for publication in Probability Surveys

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.