Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Unsupervised Quantized Prosody Representation for Controllable Speech Synthesis (2204.03238v1)

Published 7 Apr 2022 in eess.AS and cs.MM

Abstract: In this paper, we propose a novel prosody disentangle method for prosodic Text-to-Speech (TTS) model, which introduces the vector quantization (VQ) method to the auxiliary prosody encoder to obtain the decomposed prosody representations in an unsupervised manner. Rely on its advantages, the speaking styles, such as pitch, speaking velocity, local pitch variance, etc., are decomposed automatically into the latent quantize vectors. We also investigate the internal mechanism of VQ disentangle process by means of a latent variables counter and find that higher value dimensions usually represent prosody information. Experiments show that our model can control the speaking styles of synthesis results by directly manipulating the latent variables. The objective and subjective evaluations illustrated that our model outperforms the popular models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.