A note on quadratic Poisson brackets on ${\mathrm{gl}}(n,{\mathbb{R}})$ related to Toda lattices (2204.02077v2)
Abstract: It is well known that the compatible linear and quadratic Poisson brackets of the full symmetric and of the standard open Toda lattices are restrictions of linear and quadratic $r$-matrix Poisson brackets on the associative algebra ${\mathrm{gl}}(n,{\mathbb{R}})$. We here show that the quadratic bracket on ${\mathrm{gl}}(n,{\mathbb{R}})$, corresponding to the $r$-matrix defined by the splitting of ${\mathrm{gl}}(n,{\mathbb{R}})$ into the direct sum of the upper triangular and orthogonal Lie subalgebras, descends by Poisson reduction from a quadratic Poisson structure on the cotangent bundle $T*{\mathrm{GL}}(n,{\mathbb{R}})$. This complements the interpretation of the linear $r$-matrix bracket as a reduction of the canonical Poisson bracket of the cotangent bundle.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.