Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Poisson Brackets in Kontsevich's "Lie World" (1608.08886v1)

Published 31 Aug 2016 in math-ph, math.MP, and math.QA

Abstract: In this note the notion of Poisson brackets in Kontsevich's "Lie World" is developed. These brackets can be thought of as "universally" defined classical Poisson structures, namely formal expressions only involving the structure maps of a quadratic Lie algebra. We prove a uniqueness statement about these Poisson brackets with a given moment map. As an application we get formulae for the linearization of the quasi-Poisson structure of the moduli space of flat connections on a punctured sphere, and thereby identify their symplectic leaves with the reduction of coadjoint orbits. Equivalently, we get linearizations for the Goldman double Poisson bracket, our definition of Poisson brackets coincides with that of Van Den Bergh in this case. This can furthermore be interpreted as giving a monoidal equivalence between Hamiltonian quasi-Poisson spaces and Hamiltonian spaces.

Summary

We haven't generated a summary for this paper yet.