Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NC-DRE: Leveraging Non-entity Clue Information for Document-level Relation Extraction (2204.00255v1)

Published 1 Apr 2022 in cs.CL

Abstract: Document-level relation extraction (RE), which requires reasoning on multiple entities in different sentences to identify complex inter-sentence relations, is more challenging than sentence-level RE. To extract the complex inter-sentence relations, previous studies usually employ graph neural networks (GNN) to perform inference upon heterogeneous document-graphs. Despite their great successes, these graph-based methods, which normally only consider the words within the mentions in the process of building graphs and reasoning, tend to ignore the non-entity clue words that are not in the mentions but provide important clue information for relation reasoning. To alleviate this problem, we treat graph-based document-level RE models as an encoder-decoder framework, which typically uses a pre-trained LLM as the encoder and a GNN model as the decoder, and propose a novel graph-based model NC-DRE that introduces decoder-to-encoder attention mechanism to leverage Non-entity Clue information for Document-level Relation Extraction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Liang Zhang (357 papers)
  2. Yidong Cheng (3 papers)
Citations (2)