Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recent improvements of ASR models in the face of adversarial attacks (2203.16536v2)

Published 29 Mar 2022 in cs.CR, cs.AI, cs.LG, cs.SD, and eess.AS

Abstract: Like many other tasks involving neural networks, Speech Recognition models are vulnerable to adversarial attacks. However recent research has pointed out differences between attacks and defenses on ASR models compared to image models. Improving the robustness of ASR models requires a paradigm shift from evaluating attacks on one or a few models to a systemic approach in evaluation. We lay the ground for such research by evaluating on various architectures a representative set of adversarial attacks: targeted and untargeted, optimization and speech processing-based, white-box, black-box and targeted attacks. Our results show that the relative strengths of different attack algorithms vary considerably when changing the model architecture, and that the results of some attacks are not to be blindly trusted. They also indicate that training choices such as self-supervised pretraining can significantly impact robustness by enabling transferable perturbations. We release our source code as a package that should help future research in evaluating their attacks and defenses.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Raphael Olivier (10 papers)
  2. Bhiksha Raj (180 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.