Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

4-bit Conformer with Native Quantization Aware Training for Speech Recognition (2203.15952v4)

Published 29 Mar 2022 in eess.AS and cs.LG

Abstract: Reducing the latency and model size has always been a significant research problem for live Automatic Speech Recognition (ASR) application scenarios. Along this direction, model quantization has become an increasingly popular approach to compress neural networks and reduce computation cost. Most of the existing practical ASR systems apply post-training 8-bit quantization. To achieve a higher compression rate without introducing additional performance regression, in this study, we propose to develop 4-bit ASR models with native quantization aware training, which leverages native integer operations to effectively optimize both training and inference. We conducted two experiments on state-of-the-art Conformer-based ASR models to evaluate our proposed quantization technique. First, we explored the impact of different precisions for both weight and activation quantization on the LibriSpeech dataset, and obtained a lossless 4-bit Conformer model with 5.8x size reduction compared to the float32 model. Following this, we for the first time investigated and revealed the viability of 4-bit quantization on a practical ASR system that is trained with large-scale datasets, and produced a lossless Conformer ASR model with mixed 4-bit and 8-bit weights that has 5x size reduction compared to the float32 model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Shaojin Ding (12 papers)
  2. Phoenix Meadowlark (3 papers)
  3. Yanzhang He (41 papers)
  4. Lukasz Lew (7 papers)
  5. Shivani Agrawal (11 papers)
  6. Oleg Rybakov (15 papers)
Citations (29)