Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Audio-text Representation for Automated Audio Captioning with Contrastive Learning (2203.15526v2)

Published 29 Mar 2022 in cs.SD, cs.CL, and eess.AS

Abstract: Automated Audio captioning (AAC) is a cross-modal task that generates natural language to describe the content of input audio. Most prior works usually extract single-modality acoustic features and are therefore sub-optimal for the cross-modal decoding task. In this work, we propose a novel AAC system called CLIP-AAC to learn interactive cross-modality representation with both acoustic and textual information. Specifically, the proposed CLIP-AAC introduces an audio-head and a text-head in the pre-trained encoder to extract audio-text information. Furthermore, we also apply contrastive learning to narrow the domain difference by learning the correspondence between the audio signal and its paired captions. Experimental results show that the proposed CLIP-AAC approach surpasses the best baseline by a significant margin on the Clotho dataset in terms of NLP evaluation metrics. The ablation study indicates that both the pre-trained model and contrastive learning contribute to the performance gain of the AAC model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Chen Chen (752 papers)
  2. Nana Hou (8 papers)
  3. Yuchen Hu (60 papers)
  4. Heqing Zou (15 papers)
  5. Xiaofeng Qi (2 papers)
  6. Eng Siong Chng (112 papers)
Citations (20)