Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Neural Mathematical Reasoning by Abductive Combination with Symbolic Library (2203.14487v1)

Published 28 Mar 2022 in cs.LG and cs.AI

Abstract: Mathematical reasoning recently has been shown as a hard challenge for neural systems. Abilities including expression translation, logical reasoning, and mathematics knowledge acquiring appear to be essential to overcome the challenge. This paper demonstrates that some abilities can be achieved through abductive combination with discrete systems that have been programmed with human knowledge. On a mathematical reasoning dataset, we adopt the recently proposed abductive learning framework, and propose the ABL-Sym algorithm that combines the Transformer neural models with a symbolic mathematics library. ABL-Sym shows 9.73% accuracy improvement on the interpolation tasks and 47.22% accuracy improvement on the extrapolation tasks, over the state-of-the-art approaches. Online demonstration: http://math.polixir.ai

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yangyang Hu (6 papers)
  2. Yang Yu (385 papers)
Citations (3)