Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Example-based Hypernetworks for Out-of-Distribution Generalization (2203.14276v3)

Published 27 Mar 2022 in cs.CL, cs.AI, and cs.LG

Abstract: As NLP algorithms continually achieve new milestones, out-of-distribution generalization remains a significant challenge. This paper addresses the issue of multi-source adaptation for unfamiliar domains: We leverage labeled data from multiple source domains to generalize to unknown target domains at training. Our innovative framework employs example-based Hypernetwork adaptation: a T5 encoder-decoder initially generates a unique signature from an input example, embedding it within the source domains' semantic space. This signature is subsequently utilized by a Hypernetwork to generate the task classifier's weights. We evaluated our method across two tasks - sentiment classification and natural language inference - in 29 adaptation scenarios, where it outpaced established algorithms. In an advanced version, the signature also enriches the input example's representation. We also compare our finetuned architecture to few-shot GPT-3, demonstrating its effectiveness in essential use cases. To our knowledge, this marks the first application of Hypernetworks to the adaptation for unknown domains.

Citations (17)

Summary

We haven't generated a summary for this paper yet.