Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optical Fiber Fault Detection and Localization in a Noisy OTDR Trace Based on Denoising Convolutional Autoencoder and Bidirectional Long Short-Term Memory (2203.12604v1)

Published 19 Mar 2022 in eess.SP and cs.LG

Abstract: Optical time-domain reflectometry (OTDR) has been widely used for characterizing fiber optical links and for detecting and locating fiber faults. OTDR traces are prone to be distorted by different kinds of noise, causing blurring of the backscattered signals, and thereby leading to a misleading interpretation and a more cumbersome event detection task. To address this problem, a novel method combining a denoising convolutional autoencoder (DCAE) and a bidirectional long short-term memory (BiLSTM) is proposed, whereby the former is used for noise removal of OTDR signals and the latter for fault detection, localization, and diagnosis with the denoised signal as input. The proposed approach is applied to noisy OTDR signals of different levels of input SNR ranging from -5 dB to 15 dB. The experimental results demonstrate that: (i) the DCAE is efficient in denoising the OTDR traces and it outperforms other deep learning techniques and the conventional denoising methods; and (ii) the BiLSTM achieves a high detection and diagnostic accuracy of 96.7% with an improvement of 13.74% compared to the performance of the same model trained with noisy OTDR signals.

Citations (15)

Summary

We haven't generated a summary for this paper yet.