Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Broad Study of Pre-training for Domain Generalization and Adaptation (2203.11819v3)

Published 22 Mar 2022 in cs.CV

Abstract: Deep models must learn robust and transferable representations in order to perform well on new domains. While domain transfer methods (e.g., domain adaptation, domain generalization) have been proposed to learn transferable representations across domains, they are typically applied to ResNet backbones pre-trained on ImageNet. Thus, existing works pay little attention to the effects of pre-training on domain transfer tasks. In this paper, we provide a broad study and in-depth analysis of pre-training for domain adaptation and generalization, namely: network architectures, size, pre-training loss, and datasets. We observe that simply using a state-of-the-art backbone outperforms existing state-of-the-art domain adaptation baselines and set new baselines on Office-Home and DomainNet improving by 10.7\% and 5.5\%. We hope that this work can provide more insights for future domain transfer research.

Citations (72)

Summary

We haven't generated a summary for this paper yet.