Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of ImageNet Model Selection on Domain Adaptation (2002.02559v1)

Published 6 Feb 2020 in cs.CV

Abstract: Deep neural networks are widely used in image classification problems. However, little work addresses how features from different deep neural networks affect the domain adaptation problem. Existing methods often extract deep features from one ImageNet model, without exploring other neural networks. In this paper, we investigate how different ImageNet models affect transfer accuracy on domain adaptation problems. We extract features from sixteen distinct pre-trained ImageNet models and examine the performance of twelve benchmarking methods when using the features. Extensive experimental results show that a higher accuracy ImageNet model produces better features, and leads to higher accuracy on domain adaptation problems (with a correlation coefficient of up to 0.95). We also examine the architecture of each neural network to find the best layer for feature extraction. Together, performance from our features exceeds that of the state-of-the-art in three benchmark datasets.

Citations (32)

Summary

We haven't generated a summary for this paper yet.