Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modified Distribution Alignment for Domain Adaptation with Pre-trained Inception ResNet (1904.02322v2)

Published 4 Apr 2019 in cs.CV

Abstract: Deep neural networks have been widely used in computer vision. There are several well trained deep neural networks for the ImageNet classification challenge, which has played a significant role in image recognition. However, little work has explored pre-trained neural networks for image recognition in domain adaption. In this paper, we are the first to extract better-represented features from a pre-trained Inception ResNet model for domain adaptation. We then present a modified distribution alignment method for classification using the extracted features. We test our model using three benchmark datasets (Office+Caltech-10, Office-31, and Office-Home). Extensive experiments demonstrate significant improvements (4.8%, 5.5%, and 10%) in classification accuracy over the state-of-the-art.

Citations (17)

Summary

We haven't generated a summary for this paper yet.