Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of speaker age and height from speech signal using bi-encoder transformer mixture model (2203.11774v1)

Published 22 Mar 2022 in cs.SD, cs.LG, and eess.AS

Abstract: The estimation of speaker characteristics such as age and height is a challenging task, having numerous applications in voice forensic analysis. In this work, we propose a bi-encoder transformer mixture model for speaker age and height estimation. Considering the wide differences in male and female voice characteristics such as differences in formant and fundamental frequencies, we propose the use of two separate transformer encoders for the extraction of specific voice features in the male and female gender, using wav2vec 2.0 as a common-level feature extractor. This architecture reduces the interference effects during backpropagation and improves the generalizability of the model. We perform our experiments on the TIMIT dataset and significantly outperform the current state-of-the-art results on age estimation. Specifically, we achieve root mean squared error (RMSE) of 5.54 years and 6.49 years for male and female age estimation, respectively. Further experiment to evaluate the relative importance of different phonetic types for our task demonstrate that vowel sounds are the most distinguishing for age estimation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.