Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue (2203.11587v1)

Published 22 Mar 2022 in cs.CL and cs.LG

Abstract: Context modeling plays a significant role in building multi-turn dialogue systems. In order to make full use of context information, systems can use Incomplete Utterance Rewriting(IUR) methods to simplify the multi-turn dialogue into single-turn by merging current utterance and context information into a self-contained utterance. However, previous approaches ignore the intent consistency between the original query and rewritten query. The detection of omitted or coreferred locations in the original query can be further improved. In this paper, we introduce contrastive learning and multi-task learning to jointly model the problem. Our method benefits from carefully designed self-supervised objectives, which act as auxiliary tasks to capture semantics at both sentence-level and token-level. The experiments show that our proposed model achieves state-of-the-art performance on several public datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.