Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The GALAH Survey: A New Sample of Extremely Metal-Poor Stars Using A Machine Learning Classification Algorithm (2203.10843v2)

Published 21 Mar 2022 in astro-ph.GA and astro-ph.SR

Abstract: Extremely Metal-Poor (EMP) stars provide a valuable probe of early chemical enrichment in the Milky Way. Here we leverage a large sample of $\sim600,000$ high-resolution stellar spectra from the GALAH survey plus a machine learning algorithm to find 54 candidates with estimated [Fe/H]~$\leq$~-3.0, 6 of which have [Fe/H]~$\leq$~-3.5. Our sample includes $\sim 20 \%$ main sequence EMP candidates, unusually high for \emp surveys. We find the magnitude-limited metallicity distribution function of our sample is consistent with previous work that used more complex selection criteria. The method we present has significant potential for application to the next generation of massive stellar spectroscopic surveys, which will expand the available spectroscopic data well into the millions of stars.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.