Papers
Topics
Authors
Recent
2000 character limit reached

Clickbait Spoiling via Question Answering and Passage Retrieval

Published 19 Mar 2022 in cs.CL | (2203.10282v1)

Abstract: We introduce and study the task of clickbait spoiling: generating a short text that satisfies the curiosity induced by a clickbait post. Clickbait links to a web page and advertises its contents by arousing curiosity instead of providing an informative summary. Our contributions are approaches to classify the type of spoiler needed (i.e., a phrase or a passage), and to generate appropriate spoilers. A large-scale evaluation and error analysis on a new corpus of 5,000 manually spoiled clickbait posts -- the Webis Clickbait Spoiling Corpus 2022 -- shows that our spoiler type classifier achieves an accuracy of 80%, while the question answering model DeBERTa-large outperforms all others in generating spoilers for both types.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.