Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Clickbait in Online Social Media: You Won't Believe How We Did It (1710.06699v1)

Published 18 Oct 2017 in cs.SI

Abstract: In this paper, we propose an approach for the detection of clickbait posts in online social media (OSM). Clickbait posts are short catchy phrases that attract a user's attention to click to an article. The approach is based on a ML classifier capable of distinguishing between clickbait and legitimate posts published in OSM. The suggested classifier is based on a variety of features, including image related features, linguistic analysis, and methods for abuser detection. In order to evaluate our method, we used two datasets provided by Clickbait Challenge 2017. The best performance obtained by the ML classifier was an AUC of 0.8, an accuracy of 0.812, precision of 0.819, and recall of 0.966. In addition, as opposed to previous studies, we found that clickbait post titles are statistically significant shorter than legitimate post titles. Finally, we found that counting the number of formal English words in the given content is useful for clickbait detection.

Citations (14)

Summary

We haven't generated a summary for this paper yet.