2000 character limit reached
Simulating Bandit Learning from User Feedback for Extractive Question Answering
Published 18 Mar 2022 in cs.CL | (2203.10079v1)
Abstract: We study learning from user feedback for extractive question answering by simulating feedback using supervised data. We cast the problem as contextual bandit learning, and analyze the characteristics of several learning scenarios with focus on reducing data annotation. We show that systems initially trained on a small number of examples can dramatically improve given feedback from users on model-predicted answers, and that one can use existing datasets to deploy systems in new domains without any annotation, but instead improving the system on-the-fly via user feedback.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.