Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature-informed Latent Space Regularization for Music Source Separation (2203.09132v2)

Published 17 Mar 2022 in eess.AS

Abstract: The integration of additional side information to improve music source separation has been investigated numerous times, e.g., by adding features to the input or by adding learning targets in a multi-task learning scenario. These approaches, however, require additional annotations such as musical scores, instrument labels, etc. in training and possibly during inference. The available datasets for source separation do not usually provide these additional annotations. In this work, we explore transfer learning strategies to incorporate VGGish features with a state-of-the-art source separation model; VGGish features are known to be a very condensed representation of audio content and have been successfully used in many MIR tasks. We introduce three approaches to incorporate the features, including two latent space regularization methods and one naive concatenation method. Experimental results show that our proposed approaches improve several evaluation metrics for music source separation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.