Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine- and Coarse-Granularity Hybrid Self-Attention for Efficient BERT (2203.09055v1)

Published 17 Mar 2022 in cs.CL

Abstract: Transformer-based pre-trained models, such as BERT, have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, deploying these models can be prohibitively costly, as the standard self-attention mechanism of the Transformer suffers from quadratic computational cost in the input sequence length. To confront this, we propose FCA, a fine- and coarse-granularity hybrid self-attention that reduces the computation cost through progressively shortening the computational sequence length in self-attention. Specifically, FCA conducts an attention-based scoring strategy to determine the informativeness of tokens at each layer. Then, the informative tokens serve as the fine-granularity computing units in self-attention and the uninformative tokens are replaced with one or several clusters as the coarse-granularity computing units in self-attention. Experiments on GLUE and RACE datasets show that BERT with FCA achieves 2x reduction in FLOPs over original BERT with <1% loss in accuracy. We show that FCA offers a significantly better trade-off between accuracy and FLOPs compared to prior methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jing Zhao (86 papers)
  2. Yifan Wang (319 papers)
  3. Junwei Bao (34 papers)
  4. Youzheng Wu (32 papers)
  5. Xiaodong He (162 papers)
Citations (5)