Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Efficient 3D Learner via Knowledge Transferred from 2D Model (2203.08479v3)

Published 16 Mar 2022 in cs.CV

Abstract: Collecting and labeling the registered 3D point cloud is costly. As a result, 3D resources for training are typically limited in quantity compared to the 2D images counterpart. In this work, we deal with the data scarcity challenge of 3D tasks by transferring knowledge from strong 2D models via RGB-D images. Specifically, we utilize a strong and well-trained semantic segmentation model for 2D images to augment RGB-D images with pseudo-label. The augmented dataset can then be used to pre-train 3D models. Finally, by simply fine-tuning on a few labeled 3D instances, our method already outperforms existing state-of-the-art that is tailored for 3D label efficiency. We also show that the results of mean-teacher and entropy minimization can be improved by our pre-training, suggesting that the transferred knowledge is helpful in semi-supervised setting. We verify the effectiveness of our approach on two popular 3D models and three different tasks. On ScanNet official evaluation, we establish new state-of-the-art semantic segmentation results on the data-efficient track.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ping-Chung Yu (1 paper)
  2. Cheng Sun (40 papers)
  3. Min Sun (108 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.