Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Noisy Matrix Completion (2203.08340v1)

Published 16 Mar 2022 in cs.LG

Abstract: Low-rank matrix completion has been studied extensively under various type of categories. The problem could be categorized as noisy completion or exact completion, also active or passive completion algorithms. In this paper we focus on adaptive matrix completion with bounded type of noise. We assume that the matrix $\mathbf{M}$ we target to recover is composed as low-rank matrix with addition of bounded small noise. The problem has been previously studied by \cite{nina}, in a fixed sampling model. Here, we study this problem in adaptive setting that, we continuously estimate an upper bound for the angle with the underlying low-rank subspace and noise-added subspace. Moreover, the method suggested here, could be shown requires much smaller observation than aforementioned method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ilqar Ramazanli (8 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.