Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do Language Models Plagiarize? (2203.07618v2)

Published 15 Mar 2022 in cs.CL and cs.AI

Abstract: Past literature has illustrated that LLMs (LMs) often memorize parts of training instances and reproduce them in natural language generation (NLG) processes. However, it is unclear to what extent LMs "reuse" a training corpus. For instance, models can generate paraphrased sentences that are contextually similar to training samples. In this work, therefore, we study three types of plagiarism (i.e., verbatim, paraphrase, and idea) among GPT-2 generated texts, in comparison to its training data, and further analyze the plagiarism patterns of fine-tuned LMs with domain-specific corpora which are extensively used in practice. Our results suggest that (1) three types of plagiarism widely exist in LMs beyond memorization, (2) both size and decoding methods of LMs are strongly associated with the degrees of plagiarism they exhibit, and (3) fine-tuned LMs' plagiarism patterns vary based on their corpus similarity and homogeneity. Given that a majority of LMs' training data is scraped from the Web without informing content owners, their reiteration of words, phrases, and even core ideas from training sets into generated texts has ethical implications. Their patterns are likely to exacerbate as both the size of LMs and their training data increase, raising concerns about indiscriminately pursuing larger models with larger training corpora. Plagiarized content can also contain individuals' personal and sensitive information. These findings overall cast doubt on the practicality of current LMs in mission-critical writing tasks and urge more discussions around the observed phenomena. Data and source code are available at https://github.com/Brit7777/LM-plagiarism.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jooyoung Lee (48 papers)
  2. Thai Le (38 papers)
  3. Jinghui Chen (50 papers)
  4. Dongwon Lee (65 papers)
Citations (65)