Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Homogeneity and Sub-homogeneity Pursuit: Iterative Complement Clustering PCA (2203.06573v1)

Published 13 Mar 2022 in stat.ME

Abstract: Principal component analysis (PCA), the most popular dimension-reduction technique, has been used to analyze high-dimensional data in many areas. It discovers the homogeneity within the data and creates a reduced feature space to capture as much information as possible from the original data. However, in the presence of a group structure of the data, PCA often fails to identify the group-specific pattern, which is known as sub-homogeneity in this study. Group-specific information that is missed can result in an unsatisfactory representation of the data from a particular group. It is important to capture both homogeneity and sub-homogeneity in high-dimensional data analysis, but this poses a great challenge. In this study, we propose a novel iterative complement-clustering principal component analysis (CPCA) to iteratively estimate the homogeneity and sub-homogeneity. A principal component regression based clustering method is also introduced to provide reliable information about clusters. Theoretically, this study shows that our proposed clustering approach can correctly identify the cluster membership under certain conditions. The simulation study and real analysis of the stock return data confirm the superior performance of our proposed methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.