Papers
Topics
Authors
Recent
Search
2000 character limit reached

Polar Transformation Based Multiple Instance Learning Assisting Weakly Supervised Image Segmentation With Loose Bounding Box Annotations

Published 3 Mar 2022 in cs.CV, cs.LG, and eess.IV | (2203.06000v1)

Abstract: This study investigates weakly supervised image segmentation using loose bounding box supervision. It presents a multiple instance learning strategy based on polar transformation to assist image segmentation when loose bounding boxes are employed as supervision. In this strategy, weighted smooth maximum approximation is introduced to incorporate the observation that pixels closer to the origin of the polar transformation are more likely to belong to the object in the bounding box. The proposed approach was evaluated on a public medical dataset using Dice coefficient. The results demonstrate its superior performance. The codes are available at \url{https://github.com/wangjuan313/wsis-polartransform}.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.