Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GrainSpace: A Large-scale Dataset for Fine-grained and Domain-adaptive Recognition of Cereal Grains (2203.05306v1)

Published 10 Mar 2022 in cs.CV and cs.DB

Abstract: Cereal grains are a vital part of human diets and are important commodities for people's livelihood and international trade. Grain Appearance Inspection (GAI) serves as one of the crucial steps for the determination of grain quality and grain stratification for proper circulation, storage and food processing, etc. GAI is routinely performed manually by qualified inspectors with the aid of some hand tools. Automated GAI has the benefit of greatly assisting inspectors with their jobs but has been limited due to the lack of datasets and clear definitions of the tasks. In this paper we formulate GAI as three ubiquitous computer vision tasks: fine-grained recognition, domain adaptation and out-of-distribution recognition. We present a large-scale and publicly available cereal grains dataset called GrainSpace. Specifically, we construct three types of device prototypes for data acquisition, and a total of 5.25 million images determined by professional inspectors. The grain samples including wheat, maize and rice are collected from five countries and more than 30 regions. We also develop a comprehensive benchmark based on semi-supervised learning and self-supervised learning techniques. To the best of our knowledge, GrainSpace is the first publicly released dataset for cereal grain inspection.

Citations (12)

Summary

We haven't generated a summary for this paper yet.