Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Generalisation for Object Detection under Covariate and Concept Shift (2203.05294v5)

Published 10 Mar 2022 in cs.CV

Abstract: Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features, so that a model can generalise better to previously unseen target domains. An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture. Based on a rigorous mathematical analysis, we extend approaches based on feature alignment with a novel component for performing class conditional alignment at the instance level, in addition to aligning the marginal feature distributions across domains at the image level. This allows us to fully address both components of domain shift, i.e. covariate and concept shift, and learn a domain agnostic feature representation. We perform extensive evaluation with both one-stage (FCOS, YOLO) and two-stage (FRCNN) detectors, on a newly proposed benchmark comprising several different datasets for autonomous driving applications (Cityscapes, BDD10K, ACDC, IDD) as well as the GWHD dataset for precision agriculture, and show consistent improvements to the generalisation and localisation performance over baselines and state-of-the-art.

Citations (8)

Summary

We haven't generated a summary for this paper yet.