Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Field-level Factor Interactions for Fashion Recommendation (2203.03091v2)

Published 7 Mar 2022 in cs.MM and cs.IR

Abstract: Personalized fashion recommendation aims to explore patterns from historical interactions between users and fashion items and thereby predict the future ones. It is challenging due to the sparsity of the interaction data and the diversity of user preference in fashion. To tackle the challenge, this paper investigates multiple factor fields in fashion domain, such as colour, style, brand, and tries to specify the implicit user-item interaction into field level. Specifically, an attentional factor field interaction graph (AFFIG) approach is proposed which models both the user-factor interactions and cross-field factors interactions for predicting the recommendation probability at specific field. In addition, an attention mechanism is equipped to aggregate the cross-field factor interactions for each field. Extensive experiments have been conducted on three E-Commerce fashion datasets and the results demonstrate the effectiveness of the proposed method for fashion recommendation. The influence of various factor fields on recommendation in fashion domain is also discussed through experiments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.