Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribute-aware Explainable Complementary Clothing Recommendation (2107.01655v1)

Published 4 Jul 2021 in cs.IR and cs.LG

Abstract: Modelling mix-and-match relationships among fashion items has become increasingly demanding yet challenging for modern E-commerce recommender systems. When performing clothes matching, most existing approaches leverage the latent visual features extracted from fashion item images for compatibility modelling, which lacks explainability of generated matching results and can hardly convince users of the recommendations. Though recent methods start to incorporate pre-defined attribute information (e.g., colour, style, length, etc.) for learning item representations and improving the model interpretability, their utilisation of attribute information is still mainly reserved for enhancing the learned item representations and generating explanations via post-processing. As a result, this creates a severe bottleneck when we are trying to advance the recommendation accuracy and generating fine-grained explanations since the explicit attributes have only loose connections to the actual recommendation process. This work aims to tackle the explainability challenge in fashion recommendation tasks by proposing a novel Attribute-aware Fashion Recommender (AFRec). Specifically, AFRec recommender assesses the outfit compatibility by explicitly leveraging the extracted attribute-level representations from each item's visual feature. The attributes serve as the bridge between two fashion items, where we quantify the affinity of a pair of items through the learned compatibility between their attributes. Extensive experiments have demonstrated that, by making full use of the explicit attributes in the recommendation process, AFRec is able to achieve state-of-the-art recommendation accuracy and generate intuitive explanations at the same time.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yang Li (1142 papers)
  2. Tong Chen (200 papers)
  3. Zi Huang (126 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.