Papers
Topics
Authors
Recent
2000 character limit reached

Deep Q-Learning Based Resource Allocation in Interference Systems With Outage Constraint

Published 5 Mar 2022 in cs.NI | (2203.02791v1)

Abstract: This correspondence considers the resource allocation problem in wireless interference channel (IC) under link outage constraints. Since the optimization problem is non-convex in nature, existing approaches to find the optimal power allocation are computationally intensive and thus practically infeasible. Recently, deep reinforcement learning has shown promising outcome in solving non-convex optimization problems with reduced complexity. In this correspondence, we utilize a deep Q-learning (DQL) approach which interacts with the wireless environment and learns the optimal power allocation of a wireless IC while maximizing overall sum-rate of the system and maintaining reliability requirement of each link. We have used two separate deep Q-networks to remove the inherent instability in learning process. Simulation results demonstrate that the proposed DQL approach outperforms existing geometric programming based solution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.