Papers
Topics
Authors
Recent
Search
2000 character limit reached

Determining Research Priorities for Astronomy Using Machine Learning

Published 1 Mar 2022 in astro-ph.IM and cs.AI | (2203.00713v1)

Abstract: We summarize the first exploratory investigation into whether Machine Learning techniques can augment science strategic planning. We find that an approach based on Latent Dirichlet Allocation using abstracts drawn from high impact astronomy journals may provide a leading indicator of future interest in a research topic. We show two topic metrics that correlate well with the high-priority research areas identified by the 2010 National Academies' Astronomy and Astrophysics Decadal Survey science frontier panels. One metric is based on a sum of the fractional contribution to each topic by all scientific papers ("counts") while the other is the Compound Annual Growth Rate of these counts. These same metrics also show the same degree of correlation with the whitepapers submitted to the same Decadal Survey. Our results suggest that the Decadal Survey may under-emphasize fast growing research. A preliminary version of our work was presented by Thronson et al. 2021.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.