Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ASSIST: Towards Label Noise-Robust Dialogue State Tracking (2202.13024v2)

Published 26 Feb 2022 in cs.CL and cs.AI

Abstract: The MultiWOZ 2.0 dataset has greatly boosted the research on dialogue state tracking (DST). However, substantial noise has been discovered in its state annotations. Such noise brings about huge challenges for training DST models robustly. Although several refined versions, including MultiWOZ 2.1-2.4, have been published recently, there are still lots of noisy labels, especially in the training set. Besides, it is costly to rectify all the problematic annotations. In this paper, instead of improving the annotation quality further, we propose a general framework, named ASSIST (lAbel noiSe-robuSt dIalogue State Tracking), to train DST models robustly from noisy labels. ASSIST first generates pseudo labels for each sample in the training set by using an auxiliary model trained on a small clean dataset, then puts the generated pseudo labels and vanilla noisy labels together to train the primary model. We show the validity of ASSIST theoretically. Experimental results also demonstrate that ASSIST improves the joint goal accuracy of DST by up to $28.16\%$ on MultiWOZ 2.0 and $8.41\%$ on MultiWOZ 2.4, compared to using only the vanilla noisy labels.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fanghua Ye (30 papers)
  2. Yue Feng (55 papers)
  3. Emine Yilmaz (66 papers)
Citations (19)