Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Instance Segmentation using Motion Information via Optical Flow (2202.13006v1)

Published 25 Feb 2022 in cs.CV

Abstract: Weakly supervised instance segmentation has gained popularity because it reduces high annotation cost of pixel-level masks required for model training. Recent approaches for weakly supervised instance segmentation detect and segment objects using appearance information obtained from a static image. However, it poses the challenge of identifying objects with a non-discriminatory appearance. In this study, we address this problem by using motion information from image sequences. We propose a two-stream encoder that leverages appearance and motion features extracted from images and optical flows. Additionally, we propose a novel pairwise loss that considers both appearance and motion information to supervise segmentation. We conducted extensive evaluations on the YouTube-VIS 2019 benchmark dataset. Our results demonstrate that the proposed method improves the Average Precision of the state-of-the-art method by 3.1.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jun Ikeda (2 papers)
  2. Junichiro Mori (8 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.