Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guess What Moves: Unsupervised Video and Image Segmentation by Anticipating Motion (2205.07844v2)

Published 16 May 2022 in cs.CV

Abstract: Motion, measured via optical flow, provides a powerful cue to discover and learn objects in images and videos. However, compared to using appearance, it has some blind spots, such as the fact that objects become invisible if they do not move. In this work, we propose an approach that combines the strengths of motion-based and appearance-based segmentation. We propose to supervise an image segmentation network with the pretext task of predicting regions that are likely to contain simple motion patterns, and thus likely to correspond to objects. As the model only uses a single image as input, we can apply it in two settings: unsupervised video segmentation, and unsupervised image segmentation. We achieve state-of-the-art results for videos, and demonstrate the viability of our approach on still images containing novel objects. Additionally we experiment with different motion models and optical flow backbones and find the method to be robust to these change. Project page and code available at https://www.robots.ox.ac.uk/~vgg/research/gwm.

Citations (35)

Summary

We haven't generated a summary for this paper yet.