Papers
Topics
Authors
Recent
2000 character limit reached

Learning Invariant Weights in Neural Networks

Published 25 Feb 2022 in stat.ML and cs.LG | (2202.12439v2)

Abstract: Assumptions about invariances or symmetries in data can significantly increase the predictive power of statistical models. Many commonly used models in machine learning are constraint to respect certain symmetries in the data, such as translation equivariance in convolutional neural networks, and incorporation of new symmetry types is actively being studied. Yet, efforts to learn such invariances from the data itself remains an open research problem. It has been shown that marginal likelihood offers a principled way to learn invariances in Gaussian Processes. We propose a weight-space equivalent to this approach, by minimizing a lower bound on the marginal likelihood to learn invariances in neural networks resulting in naturally higher performing models.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.