Papers
Topics
Authors
Recent
2000 character limit reached

Deterministic n-person shortest path and terminal games on symmetric digraphs have Nash equilibria in pure stationary strategies

Published 23 Feb 2022 in cs.GT | (2202.11554v2)

Abstract: We prove that a deterministic n-person shortest path game has a Nash equlibrium in pure and stationary strategies if it is edge-symmetric (that is (u,v) is a move whenever (v,u) is, apart from moves entering terminal vertices) and the length of every move is positive for each player. Both conditions are essential, though it remains an open problem whether there exists a NE-free 2-person non-edge-symmetric game with positive lengths. We provide examples for NE-free 2-person edge-symmetric games that are not positive. We also consider the special case of terminal games (shortest path games in which only terminal moves have nonzero length, possibly negative) and prove that edge-symmetric n-person terminal games always have Nash equilibria in pure and stationary strategies. Furthermore, we prove that an edge-symmetric 2-person terminal game has a uniform (subgame perfect) Nash equilibrium, provided any infinite play is worse than any of the terminals for both players.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.