Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-person positive shortest path games have Nash equlibria in pure stationary strategies (2410.09257v1)

Published 11 Oct 2024 in cs.DM, cs.MA, and math.OC

Abstract: We prove that every finite two-person positive shortest path game has a Nash equilibrium (NE) in pure stationary strategies, which can be computed in polynomial time. The existence result holds also for graphs with finite out-degrees. Moreover, we prove that a terminal NE exists provided at least one of two players can guarantee reaching a terminal. If no one can do it, in other words, if each of two players can cut all terminals from the initial position $s$, then, obviously, a cyclic NE exists, although its cost is infinite for both players, since we restrict ourselves to positive games. We conjecture that a terminal NE exists too, provided there exists a directed path from $s$ to a terminal. However, this is open.

Summary

We haven't generated a summary for this paper yet.