Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Novel Self-Supervised Cross-Modal Image Retrieval Method In Remote Sensing

Published 23 Feb 2022 in cs.CV | (2202.11429v2)

Abstract: Due to the availability of multi-modal remote sensing (RS) image archives, one of the most important research topics is the development of cross-modal RS image retrieval (CM-RSIR) methods that search semantically similar images across different modalities. Existing CM-RSIR methods require the availability of a high quality and quantity of annotated training images. The collection of a sufficient number of reliable labeled images is time consuming, complex and costly in operational scenarios, and can significantly affect the final accuracy of CM-RSIR. In this paper, we introduce a novel self-supervised CM-RSIR method that aims to: i) model mutual-information between different modalities in a self-supervised manner; ii) retain the distributions of modal-specific feature spaces similar to each other; and iii) define the most similar images within each modality without requiring any annotated training image. To this end, we propose a novel objective including three loss functions that simultaneously: i) maximize mutual information of different modalities for inter-modal similarity preservation; ii) minimize the angular distance of multi-modal image tuples for the elimination of inter-modal discrepancies; and iii) increase cosine similarity of the most similar images within each modality for the characterization of intra-modal similarities. Experimental results show the effectiveness of the proposed method compared to state-of-the-art methods. The code of the proposed method is publicly available at https://git.tu-berlin.de/rsim/SS-CM-RSIR.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.