Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ML-Aided Collision Recovery for UHF-RFID Systems (2202.11257v2)

Published 23 Feb 2022 in cs.NI

Abstract: We propose a collision recovery algorithm with the aid of machine learning (ML-aided) for passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) systems. The proposed method aims at recovering the tags under collision to improve the system performance. We first estimate the number of tags from the collided signal by utilizing machine learning tools and show that the number of colliding tags can be estimated with high accuracy. Second, we employ a simple yet effective deep learning model to find the experienced channel coefficients. The proposed method allows the reader to separate each tag's signal from the received one by applying maximum likelihood decoding. We perform simulations to illustrate that the use of deep learning is highly beneficial and demonstrate that the proposed approach boosts the throughput performance of the standard framed slotted ALOHA (FSA) protocol from 0.368 to 1.837, where the receiver is equipped with a single antenna and capable of decoding up to 4 tags.

Citations (3)

Summary

We haven't generated a summary for this paper yet.