Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Nonparametric Adaptive Robust Control Under Model Uncertainty (2202.10391v3)

Published 21 Feb 2022 in math.OC and q-fin.MF

Abstract: We consider a discrete time stochastic Markovian control problem under model uncertainty. Such uncertainty not only comes from the fact that the true probability law of the underlying stochastic process is unknown, but the parametric family of probability distributions which the true law belongs to is also unknown. We propose a nonparametric adaptive robust control methodology to deal with such problem. Our approach hinges on the following building concepts: first, using the adaptive robust paradigm to incorporate online learning and uncertainty reduction into the robust control problem; second, learning the unknown probability law through the empirical distribution, and representing uncertainty reduction in terms of a sequence of Wasserstein balls around the empirical distribution; third, using Lagrangian duality to convert the optimization over Wasserstein balls to a scalar optimization problem, and adopting a machine learning technique to achieve efficient computation of the optimal control. We illustrate our methodology by considering a utility maximization problem. Numerical comparisons show that the nonparametric adaptive robust control approach is preferable to the traditional robust frameworks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube