Papers
Topics
Authors
Recent
Search
2000 character limit reached

NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale Network Attacks

Published 20 Feb 2022 in cs.CR, cs.LG, and cs.NI | (2202.09873v2)

Abstract: Machine Learning (ML) techniques are increasingly adopted to tackle ever-evolving high-profile network attacks, including DDoS, botnet, and ransomware, due to their unique ability to extract complex patterns hidden in data streams. These approaches are however routinely validated with data collected in the same environment, and their performance degrades when deployed in different network topologies and/or applied on previously unseen traffic, as we uncover. This suggests malicious/benign behaviors are largely learned superficially and ML-based Network Intrusion Detection System (NIDS) need revisiting, to be effective in practice. In this paper we dive into the mechanics of large-scale network attacks, with a view to understanding how to use ML for Network Intrusion Detection (NID) in a principled way. We reveal that, although cyberattacks vary significantly in terms of payloads, vectors and targets, their early stages, which are critical to successful attack outcomes, share many similarities and exhibit important temporal correlations. Therefore, we treat NID as a time-sensitive task and propose NetSentry, perhaps the first of its kind NIDS that builds on Bidirectional Asymmetric LSTM (Bi-ALSTM), an original ensemble of sequential neural models, to detect network threats before they spread. We cross-evaluate NetSentry using two practical datasets, training on one and testing on the other, and demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce. Further, we put forward a novel data augmentation technique that boosts the generalization abilities of a broad range of supervised deep learning algorithms, leading to average F1 score gains above 35%.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.