Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsity Winning Twice: Better Robust Generalization from More Efficient Training (2202.09844v3)

Published 20 Feb 2022 in cs.CV and cs.LG

Abstract: Recent studies demonstrate that deep networks, even robustified by the state-of-the-art adversarial training (AT), still suffer from large robust generalization gaps, in addition to the much more expensive training costs than standard training. In this paper, we investigate this intriguing problem from a new perspective, i.e., injecting appropriate forms of sparsity during adversarial training. We introduce two alternatives for sparse adversarial training: (i) static sparsity, by leveraging recent results from the lottery ticket hypothesis to identify critical sparse subnetworks arising from the early training; (ii) dynamic sparsity, by allowing the sparse subnetwork to adaptively adjust its connectivity pattern (while sticking to the same sparsity ratio) throughout training. We find both static and dynamic sparse methods to yield win-win: substantially shrinking the robust generalization gap and alleviating the robust overfitting, meanwhile significantly saving training and inference FLOPs. Extensive experiments validate our proposals with multiple network architectures on diverse datasets, including CIFAR-10/100 and Tiny-ImageNet. For example, our methods reduce robust generalization gap and overfitting by 34.44% and 4.02%, with comparable robust/standard accuracy boosts and 87.83%/87.82% training/inference FLOPs savings on CIFAR-100 with ResNet-18. Besides, our approaches can be organically combined with existing regularizers, establishing new state-of-the-art results in AT. Codes are available in https://github.com/VITA-Group/Sparsity-Win-Robust-Generalization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Tianlong Chen (202 papers)
  2. Zhenyu Zhang (250 papers)
  3. Pengjun Wang (27 papers)
  4. Santosh Balachandra (1 paper)
  5. Haoyu Ma (45 papers)
  6. Zehao Wang (38 papers)
  7. Zhangyang Wang (375 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.