Papers
Topics
Authors
Recent
2000 character limit reached

Data-Driven Enhanced Model Reduction for Bifurcating Models in Computational Fluid Dynamics (2202.09250v3)

Published 18 Feb 2022 in math.NA and cs.NA

Abstract: We investigate various data-driven methods to enhance projection-based model reduction techniques with the aim of capturing bifurcating solutions. To show the effectiveness of the data-driven enhancements, we focus on the incompressible Navier-Stokes equations and different types of bifurcations. To recover solutions past a Hopf bifurcation, we propose an approach that combines proper orthogonal decomposition with Hankel dynamic mode decomposition. To approximate solutions close to a pitchfork bifurcation, we combine localized reduced models with artificial neural networks. Several numerical examples are shown to demonstrate the feasibility of the presented approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.